SHORT COMMUNICATION

W. Wang · T. Kishida · M. Fukuda · Y. Tamaki The Y-27H39 polymorphism in a Japanese population

Received: 2 January 1996 / Received in revised form: 24 April 1996

Abstract We studied 184 Japanese males for the tetranucleotide TAGA repeat polymorphism at the Y-27H39 locus on the Y chromosome, and discovered a new allele, tentatively named F. Direct sequencing of Y-27H39 alleles revealed that the new allele (206 nt) is larger than allele E (202 nt) by 1 repeat unit. The six alleles differ only in the number of repeats, the flanking sequences being constant. The allele frequencies are different in Japanese and Caucasians.

Key words Y chromosome · Polymorphism · Population study · DNA sequencing

Introduction

The tetranucleotide repeat polymorphism at the Y-27H39 locus on the human Y chromosome (Roewer et al. 1992; Santos et al. 1993; Yamamoto et al. 1994) is attracting forensic interest because of the potential for sex identification as well as individual identification and paternity testing in deficiency cases. We studied the Y-27H39 polymorphism in a Japanese population and discovered a new allele.

Material and methods

Blood samples were taken from 184 Japanese males and DNA was extracted as described elsewhere (Lewin and Stewart-Haynes 1992). Two primers, H39.1–5'-CTACTGAGTTTCTGTTATAGT-3' and H39.2–5'-ATGGCATGTAGTGAGGACA-3' (Roewer et al. 1992) were used to amplify Y-27H39 alleles. The same primers, one of which was labeled with biotin, were then used to prepare the single-stranded Dynabeads-coupled templates (Dynal, Oslo) for direct sequencing of PCR products (fmol DNA sequencing system, Promega, Madison, Wis) as described previously (Wang et al. 1996). The PCR products were resolved on 5% polyacrylamide gels (Long Ranger, AT Biochem, Malvern, Pa) containing 7 M urea, and capillary blotted onto a Hybond-N+ membrane (Amer-

W. Wang · T. Kishida · M. Fukuda · Y. Tamaki (⊠) Department of Forensic Medicine, Oita Medical University, Oita 879-55, Japan sham, Tokyo). Alleles were visualized by probing with the primer H39.1 which was 3'-labeled with digoxigenin-dUTP, followed by reaction with alkaline phosphatase-labeled Fab fragments of antidigoxigenin antibodies (DIG Oligonucleotide Tailing Kit, Boehringer Mannheim).

Results and discussion

Since we found only one F allele in a sample of 184 individuals (Fig. 1 and Table 1) and no male relatives of the

1 2 3 4 5 6 AL

Fig.1 The six alleles detected at Y-27H39 locus in a sample of 184 Japanese males. Lanes 1–6: alleles A to F. AL: allelic ladder

 Table 1
 Allele frequencies for Y-27H39 in Japanese and Caucasians

Allele	Length (nt)*	Frequency			
		Japanese	Caucasians*		
A	186	0.054	0.19		
В	190	0.071	0.49		
С	194	0.457	0.24		
D	198	0.190	0.07		
Е	202	0.223	0.01		
F	206	0.005	-		

* Santos et al. (1993)

* nt = nucleotide

W. Wang et. al.: Y-27H39 in a Japanese population

Allele	Repeat segment						
	1	2		3		4	5
	(TA) ₅ G	TNN (TA) ₅	GTNN	(TA) ₆	GTNNTT	(TAGA) ₃	TANN (TAGA) ₁₀ TATA*
А			GT -		GT		$GG (TAGA)_{10}$
В			GT -		GT		GG (TAGA) ₁₁
С			GT -		GT		GG (TAGA) ₁₂
D			– – GT -		GT		$GG (TAGA)_{13}$
Е			GT -		GT		$GG (TAGA)_{14}$
F			GT ~		GT		GG (TAGA) ₁₅
	A B C D E F	Affect Repeat s 1 $(TA)_5$ G A B C D E F	AnereRepeat segment12 $(TA)_5$ GTNN $(TA)_5$ BCDEF	AlleleRepeat segment12 $(TA)_5$ GTNN $(TA)_5$ GTNNA	A I 2 3 $(TA)_5$ GTNN (TA)_5 GTNN (TA)_6 GT GT GT B	Allele Repeat segment 1 2 3 (TA) ₅ GTNN (TA) ₅ GTNN (TA) ₆ GTNNTT A GT GT GT B GT GT GT C GT GT GT D GT GT GT E GT GT GT F GT GT GT	Allele Repeat segment 1 2 3 4 (TA) ₅ GTNN (TA) ₅ GTNN (TA) ₆ GTNNTT (TAGA) ₃ A GTGTGTGTGTGTGTGTGT

proband were available for pedigree studies, we had to eliminate the possibility of the new allele having been amplified by Taq DNA polymerase errors. The F allele was reproducibly amplified from the original DNA sample. In addition, direct sequencing of the new allele showed it to be exactly 4 nt (a repeat unit of GATA) longer than allele E. The results prove the existence of this new allele at the Y-27H39 locus (Table 2). The hitherto detection of five alleles (A-E) in Caucasians (Santos et al. 1993) and six alleles (A-F) in Japanese (this study) cannot be interpreted as a racial difference because the data for Caucasians are from a relatively small sample size of 100 individuals. However, the frequencies of the alleles are different between the two populations (Table 1).

The Y-27H39 locus shows a regular repeat variability and a relatively high discriminating power of 0.697, and therefore appears especially useful for sex identification, paternity testing in deficiency cases and studies of paternal lineage. Recently, we have successfully applied Y-27H39 typing in a deficiency case of disputed paternity (Kishida et al. 1996).

Note added in proof We discovered another new allele G (210 nt) with a frequency of 1 in 200. Direct sequencing revealed this allele to be longer than allele F by one repeat unit (GATA).

References

- Kishida T, Wang W, Fukuda M, Tamaki Y (1996) Two deficiency cases of disputed paternity: sibling or half-sibling? Nippon Hoigaku Zasshi (in press)
- Lewin HA, Stewart-Haynes JA (1992) A simple method for DNA extraction from leukocytes for use in PCR. Biotechniques 13: 522–524
- Roewer L, Arnemann J, Spurr NK, Grzeschik K-H, Epplen JT (1992) Simple repeat sequences on the human Y chromosome are equally polymorphic as their autosomal counterparts. Hum Genet 89:389–394
- Santos FR, Pena SD, Epplen JT (1993) Genetic and population study of a Y-linked tetranucleotide repeat DNA polymorphism with a simple non-isotopic technique. Hum Genet 90:655–656
- Wang W, Fukuda M, Kishida T, Tamaki Y (1996) Quintuplex PCR-amplification of microsatellites. Nippon Hoigaku Zasshi (in press)
- Yamamoto Y, Takata S, Miyaishi S, Ishizu H (1994) Y chromosome microsatellite Y-27H39 (DYS19) typing and its application to forensic practice (in Japanese). DNA Polymorphism 2: 49–52